
 AI Based Sequence Detection
 Asif Ahmad , Abhishek Chauhan
 asif@agnisys.com , abhishek.ch@agnisys.com

INTRODUCTION

In this era of automation, this article aims to help in capturing

verification and validation sequences by automatically generating them

from Natural Language using Artificial Intelligence (AI) based sequence

detection techniques and then using those sequences in C/UVM code.

The article talks about the current state of development and gives ideas

about how the reader can implement their own solution to achieve true

specification driven software development.

OVERVIEW

With continuing advancement of Artificial Intelligence (AI) and

Machine Learning (ML), their usage in the field of technology has

increased by many folds. Their application has increased in diverse fields

such as face detection technique, face wrapping, object detection

technique, goal classifiers, language translation, chatbots, spam

detection, data scrapping, etc. Through AI, rule-based applications have

vanished and taken a back seat as there have been many algorithms

invented which are capable of defining its own rules or create classifiers

like linear Regression, Logistic Regression, Trees, SVM etc. Along with

the Algorithms what is really important, is the data that is used to train

the model of these algorithms. In EDA, the application of ML or Deep

Learning techniques enables the modeling and the simulation with an

unprecedent levels of insight, hence one can expect greater efficiency and

accuracy from design tools which would definitely translate into shorter

turnaround times and providing greater flexibility in analysis,

mailto:asif@agnisys.com
mailto:abhishek.ch@agnisys.com

simulation coverage and thus shift a step ahead towards broader

automation. It can help in identifying patterns to optimize design,

allowing the designers and the testers to model more complex design in

simpler way and in lesser time and hence make the designs more efficient

in multiple aspects of automation and generation of design as well as in

verification and validation with assertions, sequences for special

registers providing maximum testing report which can surely help in

accelerating the entire design process in general. Also ML-generated

models can provide better feedback to the designers or engineers by

indicating whether the design would live up to the expected performance

at each step of the development process.

Usage of Natural Language Processing (NLP)

The usage of Natural Language Processing (NLP) for manipulation of

natural language text to determine and capture sequences is now

possible using deep learning techniques. Applications like Machine

Translation, Speech recognition, Conversational Chatbots, POS (parts of

speech) Tagger have been most popular among the NLP applications.

 NLP is basically a vast field of research area broadly used for

determining speech or text written in communication language and this

field grew out of the field of linguistics and has succeeded above

expectation so far and even more is there to achieve in the near future .

It can be used for the development of deep learning models for

classification of text, translation of text and more. NLP is sometimes also

referred as ‘linguistic science’ in order to include both classical linguistics

as well as modern statistical methods. In ML, we are concerned more

with the tools and methods from the field of NLP which is basically

automatic processing of human understandable language.

Deep Learning is a subfield of machine learning that focuses on the

algorithms inspired by the structure and function of the brain. These

techniques have proved useful in solving challenging natural language

processing problems. Several neural network architectures have great

impact in addressing natural language processing tasks.

Figure 1 – comparison graph

Usage of Recurrent Neural Network (RNN)

A neural network is nothing but a series of algorithm that attempts to

recognize basic relationships in a set of data similar to the way the human

brain operates. Recurrent Neural Network (RNN) is one such type of

neural network designed to deal with real world problems like machine

translation, chatbot, etc. The input and output are connected as previous

step output is fed as current step input to predict the new text. The RNN

comes with a hidden state that basically remembers some information

Data Amount

 P
er

fo
rm

an
ce

about a sequence with the help of a memory in it. It uses same parameters

recursively for all inputs and performs the same task on them as well as

the hidden layers to produce the output reducing the complexity of those

parameters.

RNN is used in NLP to carry pertinent information from one input item

in series, i.e., it can take a series on input without any predefined limit on

size. Basically, in RNN every word gets transformed into machine

readable vectors. This sequence of vectors are processed one by one. The

processing is done by passing the hidden state to the very next step of

the sequence and this hidden state acts as a memory of the neural

network which holds the previous data seen by the network itself, i.e., all

the inputs are related to each other. This makes it applicable to

accomplish tasks such as unsegmented, connected handwriting

recognition or speech recognition.

 Figure 2- A typical RNN unit with a recurrent hidden layer

 INPUT
HIDDEN LAYER

 OUTPUT

RNN Bases Long Short Term Memory(LSTM)usage

As RNN cannot process very long or large sequences, Long Short Term

Memory (LSTM) is used which is a modified version of the RNN that

makes it simpler to remember past data in the memory helping in

retaining memory of long sequences.

This type of RNN is very well suited to classify and process as well as

predict time series given the lags of unknown duration. It trains the

model using back propagation and at every time step, attention is given

to those words that direct towards the prediction of most part of the

output. This attention weight is calculated using an algorithm and

formula for each time step and then these attention weights are

multiplied by each hidden state of respective time step to form attention

values which is achieved using the attention mechanism that allows to

focus on certain part of the input sequence while predicting a certain part

of the output sequence that ultimately enables easier learning and higher

quality of prediction. A final context vector is build by the dot product

of all attention values which is also known as stacking. This context

vector enables the decoder to focus on those certain parts of the input

sequence while predicting its output.

Example: -

Let the context vectors be c1, c2, c3, ...

with h1, h2, h3, … be output vectors of the encoder

and α1, α2, α3, ... be their attention weights

So, the dot product would be -

 The output is then fed word by word to the decoder of the LSTM

network and at each time step context vector is used to produce

appropriate output. Thus, the attention mechanism located between the

encoder and the decoder enables improved performance.

Sequence Detection

Over the years we have come across and understood a lot of different
ways people use registers associated with the Hardware/Software
Interface (HSI). This information has helped us understand the kind of
sequences users create to program and test their IPs.

As in an ideal world, users would rather use plain and simple English
text to describe the sequences rather than encode in various languages.
In any case, this is being done in the original specification. Natural, plain
English is still the hallmark of specifications in today’s system design
and a lot of useful and actionable information is embedded in the natural
language specification text.

Numerous translations happen when the architect/designer creates a

specification in English language and the hardware/software/firmware

engineer must manually convert them into code. With this new

methodology, the specification writer’s original intent is converted into

real, usable code. They need to just describe the sequences in a natural

language as they would write when communicating to members of their

team.

Basically, RNN based network is used in this to read the input text (i.e.,

the sequence description text) word by word. The order of the sentence

formation is maintained so as to learn the meaning of input text. Each

word is processed through a RNN unit which can either be LSTM or

GRU. LSTM and GRU are the types of RNN which have their own

essential rules. LSTM has the capability of retaining maximum

information of long sequences and GRU (Gated Recurrent Unit) has the

ability to forget irrelevant information and retain only the important

information with regard to the context. These units process all the words

one by one and hence generate output information as its resultant. We

have also used bidirectional layer which reads the input text form both

the directions (i.e., both forward and backward) improving the

performance of the model on this sequence classification. As we know

that in the field of AI, everything is all about numbers, vectors, matrix

and statistics, so we can say that a model can only feed numbers and it

can only infer probabilities and the maximum probability is always

chosen. Our model follows the same to predict the most probable output.

We have also focused on embedding as neural network only accepts

numbers rather than string values, that is basically treating each input

text word by making their vector forms which ultimately represents each

word with some fixed size vector of numbers. Apart from embedding,

attention algorithm has also been used which helps in predicting more

closely expected outputs, i.e., the most probable expected output

sequence. This attention layer helps in giving word or vectors more

weightage by giving them scores and comparing them with the output

during the training of the model itself. This weightage help in predicting

more close expected outputs for desired input sentences. Ultimately

everything comes down to the part of dataset on which the model gets

trained. The data that is fed to the model for training should be as good

as possible ,i.e., the dataset should be apt to expect a greater performance

from the model.

We have carefully created our corpus by getting references from actual

used register programming sequences in the EDA industry. We have

introduced a wide variety of cases including cases with augmented data

or noise . This robust model a great accuracy covering all most all

scenarios of sequences that can be used by a designer for description of a

input text sequence.

Implementation

This model has been deployed and using Django Framework to maintain

communication between the model and iDSNG (our spec entry tool)

through various APIs handling multiple requests at a single time.

 Figure 3 -COMMUNICATION FRAMEWORK

The above communication network represents the interaction of iDSNG

with the model through rest APIs.

Below is the figure (Figure 4) depicting the results of the input text, .i.e.,

the sequence description below the column ‘description’ and its predicted

output by the model in the column ‘command’.

DJANGO

FRAMEWORK iDSNG

MODEL

DJANGO FRAMEWORK

APIs

The specification used in the example figure (Figure 4) basically consists

of the register ‘dma_controller’ having the field ‘hsel’ and the register

‘Sbcs’ having the field ‘Sberror’ .

Figure 4- Description of sequence and the predicted output sequence

LIMITATIONS

Issue remains with words which are unknown in the

vocabulary/dictionary of the model. For such words model may

produce unexpected outputs as those are out of context for the model.

In some cases, failure in data interpretation occurs because of

insufficient data input.

The model may produce unexpected results if not trained with enough

data that is accurate, i.e., the training dataset needs to be large and

accurate.

Computational power, inference time, etc. comes in as hindrance for

viable usage with larger architecture.

CONCLUSION

We have been able to handle a wide variety of cases with an accuracy as

good as more than 90% with no delay in inference time. This model can

effectively handle noise in the input text and thus give attention to only

the relevant part of the text that has any influence in the output

sequence generating correct output sequences .We have achieved this

by improving on and working around the limitations like sufficient and

correct amount of dataset to train the model, improving the inference

time by reducing the complexity of the model architecture and other

issues that we faced along.

REFERENCES

1. https://www.agnisys.com/ids_nextgen/

2. https://content.riscv.org/wp-content/uploads/2018/05/15.55-16-30-UL-001906-PT-C-

RISCV-Debug-Specification-Update-and-Tutorial-for-Barcelona-Workshop.pdf

3. https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-

architectures-software-developer-vol-3b-part-2-manual.pdf

4. https://www.analog.com/media/en/technical-documentation/user-

guides/ADV7511_Programming_Guide.pdf

https://content.riscv.org/wp-content/uploads/2018/05/15.55-16-30-UL-001906-PT-C-RISCV-Debug-Specification-Update-and-Tutorial-for-Barcelona-Workshop.pdf
https://content.riscv.org/wp-content/uploads/2018/05/15.55-16-30-UL-001906-PT-C-RISCV-Debug-Specification-Update-and-Tutorial-for-Barcelona-Workshop.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-3b-part-2-manual.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-3b-part-2-manual.pdf
https://www.analog.com/media/en/technical-documentation/user-guides/ADV7511_Programming_Guide.pdf
https://www.analog.com/media/en/technical-documentation/user-guides/ADV7511_Programming_Guide.pdf

