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INTRODUCTION 

In this era of automation, this article aims to help in capturing 

verification and validation sequences by automatically generating them 

from Natural Language using Artificial Intelligence (AI) based sequence 

detection techniques and then using those sequences in C/UVM code. 

The article talks about the current state of development and gives ideas 

about how the reader can implement their own solution to achieve true 

specification driven software development. 

 

OVERVIEW 

With continuing advancement of Artificial Intelligence (AI) and 

Machine Learning (ML), their usage in the field of technology has 

increased by many folds. Their application has increased in diverse fields 

such as face detection technique, face wrapping, object detection 

technique, goal classifiers, language translation, chatbots, spam 

detection, data scrapping, etc. Through AI, rule-based applications have 

vanished and taken a back seat as there have been many algorithms 

invented which are capable of defining its own rules or create classifiers 

like linear Regression, Logistic Regression, Trees, SVM etc. Along with 

the Algorithms what is really important, is the data that is used to train 

the model of these algorithms. In EDA, the application of ML or Deep 

Learning techniques enables the modeling and the simulation with an 

unprecedent levels of insight, hence one can expect greater efficiency and 

accuracy from design tools which would definitely translate into shorter 

turnaround times and providing greater flexibility in analysis, 
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simulation coverage and thus shift a step ahead towards broader 

automation. It can help in identifying patterns to optimize design, 

allowing the designers and the testers to model more complex design in 

simpler way and in lesser time and hence make the designs more efficient 

in multiple aspects of automation and generation of design as well as in 

verification and validation with assertions, sequences for special 

registers providing maximum testing report which can surely help in 

accelerating the entire design process in general. Also ML-generated 

models can provide better feedback to the designers or engineers by 

indicating whether the design would live up to the expected performance 

at each step of the development process. 

 

Usage of Natural Language Processing (NLP) 

 
The usage of Natural Language Processing (NLP) for manipulation of 

natural language text to determine and capture sequences is now 

possible using deep learning techniques. Applications like Machine 

Translation, Speech recognition, Conversational Chatbots, POS (parts of 

speech) Tagger have been most popular among the NLP applications. 

 

 NLP is basically a vast field of research area broadly used for 

determining speech or text written in communication language and this 

field grew out of the field of linguistics and has succeeded above 

expectation so far and even more is there to achieve in the near future . 

It can be used for the development of deep learning models for 

classification of text, translation of text and more. NLP is sometimes also 

referred as ‘linguistic science’ in order to include both classical linguistics 

as well as modern statistical methods. In ML, we are concerned more 

with the tools and methods from the field of NLP which is basically 

automatic processing of human understandable language. 

 



 

Deep Learning is a subfield of machine learning that focuses on the 

algorithms inspired by the structure and function of the brain. These  

techniques have proved useful in solving challenging natural language 

processing problems. Several neural network architectures have great 

impact in addressing natural language processing tasks. 

 

 

 

 

 

 

 

 

 

 

       

Figure 1 – comparison graph 

 

Usage of Recurrent Neural Network (RNN) 

A neural network is nothing but a series of algorithm that attempts to 

recognize basic relationships in a set of data similar to the way the human 

brain operates. Recurrent Neural Network (RNN) is one such type of 

neural network designed to deal with real world problems like machine 

translation, chatbot, etc. The input and output are connected as previous 

step output is fed as current step input to predict the new text. The RNN 

comes with a hidden state that basically remembers some information 
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about a sequence with the help of a memory in it. It uses same parameters 

recursively for all inputs and performs the same task on them as well as 

the hidden layers to produce the output reducing the complexity of those 

parameters. 

RNN is used in NLP to carry pertinent information from one input item 

in series, i.e., it can take a series on input without any predefined limit on 

size.  Basically, in RNN every word gets transformed into machine 

readable vectors. This sequence of vectors are processed one by one. The 

processing is done by passing the hidden state to the very next step of 

the sequence and this hidden state acts as a memory of the neural 

network which holds the previous data seen by the network itself, i.e., all 

the inputs are related to each other. This makes it applicable to 

accomplish tasks such as unsegmented, connected handwriting 

recognition or speech recognition. 

 

 

  

 

 

       

     Figure 2- A typical RNN unit with a recurrent hidden layer 
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RNN Bases Long Short Term Memory(LSTM)usage 

As RNN cannot process very long or large sequences, Long Short Term 

Memory (LSTM) is used which is a modified version of the RNN that 

makes it simpler to remember past data in the memory helping in 

retaining memory of long sequences.  

This type of RNN is very well suited to classify and process as well as 

predict time series given the lags of unknown duration. It trains the 

model using back propagation and at every time step, attention is given 

to those words that direct towards the prediction of most part of the 

output. This attention weight is calculated using an algorithm and 

formula for each time step and then these attention weights are 

multiplied by each hidden state of respective time step to form attention 

values which is achieved using the attention mechanism that allows to 

focus on certain part of the input sequence while predicting a certain part 

of the output sequence that ultimately enables easier learning and higher 

quality of prediction. A final context vector is build by the dot product 

of all attention values which is also known as stacking. This context 

vector enables the decoder to focus on those certain parts of the input 

sequence while predicting its output. 

Example: -  

Let the context vectors be c1, c2, c3, ... 

with h1, h2, h3, … be output vectors of the encoder 

and α1, α2, α3, ... be their attention weights 

So, the dot product would be - 

 

 



 The output is then fed word by word to the decoder of the LSTM 

network and at each time step context vector is used to produce 

appropriate output. Thus, the attention mechanism located between the 

encoder and the decoder enables improved performance. 

 

 

Sequence Detection 

 

Over the years we have come across and understood a lot of different 
ways people use registers associated with the Hardware/Software 
Interface (HSI). This information has helped us understand the kind of 
sequences users create to program and test their IPs. 

As in an ideal world, users would rather use plain and simple English 
text to describe the sequences rather than encode in various languages. 
In any case, this is being done in the original specification. Natural, plain 
English is still the hallmark of specifications in today’s system design 
and a lot of useful and actionable information is embedded in the natural 
language specification text. 

Numerous translations happen when the architect/designer creates a 

specification in English language and the hardware/software/firmware 

engineer must manually convert them into code. With this new 

methodology, the specification writer’s original intent is converted into 

real, usable code. They need to just describe the sequences in a natural 

language as they would write when communicating to members of their 

team. 

Basically, RNN based network is used in this to read the input text (i.e., 

the sequence description text) word by word. The order of the sentence 

formation is maintained so as to learn the meaning of input text. Each 

word is processed through a RNN unit which can either be LSTM or 

GRU. LSTM and GRU are the types of RNN which have their own 



essential rules. LSTM has the capability of retaining maximum 

information of long sequences and GRU (Gated Recurrent Unit) has the 

ability to forget irrelevant information and retain only the important 

information with regard to the context. These units process all the words 

one by one and hence generate output information as its resultant. We 

have also used bidirectional layer which reads the input text form both 

the directions (i.e., both forward and backward) improving the 

performance of the model on this sequence classification. As we know 

that in the field of AI, everything is all about numbers, vectors, matrix 

and statistics, so we can say that a model can only feed numbers and it 

can only infer probabilities and the maximum probability is always 

chosen. Our model follows the same to predict the most probable output. 

We have also focused on embedding as neural network only accepts 

numbers rather than string values, that is basically treating each input 

text word by making their vector forms which ultimately represents each 

word with some fixed size vector of numbers. Apart from embedding, 

attention algorithm has also been used which helps in predicting more 

closely expected outputs, i.e., the most probable expected output 

sequence. This attention layer helps in giving word or vectors more 

weightage by giving them scores and comparing them with the output 

during the training of the model itself. This weightage help in predicting 

more close expected outputs for desired input sentences. Ultimately 

everything comes down to the part of dataset on which the model gets 

trained. The data that is fed to the model for training should be as good 

as possible ,i.e., the dataset should be apt to expect a greater performance 

from the model. 

We have carefully created our corpus by getting references from actual 

used register programming sequences in the EDA industry. We have  

introduced a wide variety of cases including cases with augmented data 

or noise . This robust model a great accuracy covering all most all 

scenarios of sequences that can be used by a designer for description of a 

input text sequence. 

 



 

Implementation 

 

This model has been deployed and using Django Framework to maintain 

communication between the model and iDSNG (our spec entry tool) 

through various APIs handling multiple requests at a single time.  

 

 

 

 

 

 

 

 

 

 

                                           Figure 3 -COMMUNICATION  FRAMEWORK 

 

 

The above communication network represents the interaction of iDSNG 

with the  model through rest APIs. 

Below is the figure (Figure 4) depicting the results of the input text, .i.e., 

the sequence description below the column ‘description’ and its predicted 

output by the model in the column ‘command’. 
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The specification used in the example figure (Figure 4) basically consists 

of the register ‘dma_controller’ having the field ‘hsel’ and the register 

‘Sbcs’ having the field ‘Sberror’ . 

 

 

 

Figure 4- Description of sequence and the predicted output sequence 

 

 

 

 



LIMITATIONS 

Issue remains with words which are unknown in the 

vocabulary/dictionary of the model. For such words model may 

produce unexpected outputs as those are out of context for the model. 

In some cases, failure in data interpretation occurs because of 

insufficient data input. 

The model may produce unexpected results if not trained with enough 

data that is accurate, i.e., the training dataset needs to be large and 

accurate. 

Computational power, inference time, etc. comes in as hindrance for 

viable usage with larger architecture. 

 

CONCLUSION 

We have been able to handle a wide variety of cases with an accuracy as 

good as more than 90% with no delay in inference time. This model can 

effectively handle noise in the input text and thus give attention to only 

the relevant part of the text that has any influence in the output 

sequence generating correct output sequences .We have achieved this 

by improving on and working around the limitations like sufficient and 

correct amount of dataset to train the model, improving the inference 

time by reducing the complexity of the model architecture and other 

issues that we faced along. 
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